Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

نویسندگان

  • Renwen Zhang
  • Zhijie Liu
  • Youxing Qu
  • Ying Xu
  • Qing Yang
چکیده

In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A)), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231) and carboxyl tail of the receptor (ct, 302-317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A) holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A) receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotransfection of second and third intracellular loop fragments inhibit angiotensin AT1a receptor activation of phospholipase C in HEK-293 cells.

Peptides from the intracellular regions of G protein-coupled receptors are useful probes of receptor-G protein coupling mechanisms. As a first step toward the genetic delivery of such "G protein inhibitors," we describe inhibition of angiotensin II (AII) receptor responses by expressed fragments of the second and third intracellular loops of the AT1a receptor (AT1a/i2 and AT1a/i3). Transient tr...

متن کامل

Role of cytoplasmic tail of the type 1A angiotensin II receptor in agonist- and phorbol ester-induced desensitization.

To investigate mechanisms underlying the agonist-induced desensitization of the type 1A angiotensin II receptor (AT1A-R), we have stably expressed in Chinese hamster ovary (CHO) cells the wild-type receptor and truncated mutants lacking varying lengths of the cytoplasmic tail. Assay of inositol 1,4,5-trisphosphate (IP3) formation in response to agonist demonstrated that the truncated mutants T3...

متن کامل

Evaluation of the membrane-binding properties of the proximal region of the angiotensin II receptor (AT1A) carboxyl terminus by surface plasmon resonance.

The proximal region of the angiotensin II receptor (AT1A) carboxyl-terminus (known as helix VIII) is important for receptor function. In this study, we used surface plasmon resonance (SPR) to examine the interaction of helix VIII-derived peptides with three model lipid membranes. The membrane-binding properties of these synthetic peptides, as well as a series of peptide analogues with modified ...

متن کامل

Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail.

The agonist-induced phosphorylation sites of the rat AT1a angiotensin receptor were analyzed using epitope-tagged mutant receptors expressed in Cos-7 cells. Angiotensin II-stimulated receptor phosphorylation was unaffected by truncation of the cytoplasmic tail of the receptor at Ser342 (Delta342) but was abolished by truncation at Ser325 (Delta325). Truncation at Ser335 (Delta335), or double-po...

متن کامل

Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the AT1 angiotensin receptor.

The coupling of agonist-activated seven transmembrane domain receptors to G proteins is known to involve the amino-terminal region of their third cytoplasmic loop. Analysis of the amino acids in this region of the rat type in angiotensin (AT1a) receptor identified Leu-222 as an essential residue in receptor activation by the physiological agonist, angiotensin II (Ang II). Nonpolar replacements ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013